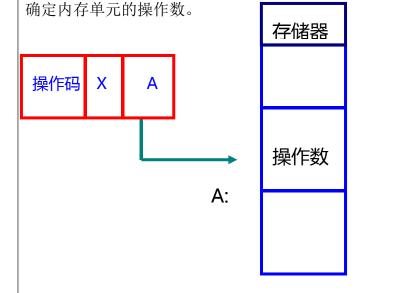
《计算机原理》 教 案

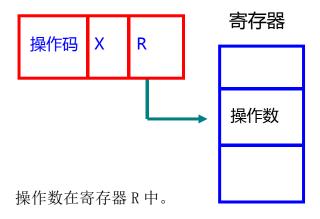

学	计算机	课 题	第四章 指令系统				课次		
科	应用		4. 3 寻址方式						
授课时间		2017. 11. 20, 11. 23			课的类型	新授课			
授课方法		讲授法、启发、指导			授课时数	4			
教	具					授课班级			
教	学目标	掌握各种	寻址方式的	う意义			审批意见		
教	教学重点 1. 寻址的意义 2. 间接寻址								
教	学难点	1. 间接寻均	ıt						
		教	学	设	计			附	记
	运行	的指令在主	存中,指令	今在运行过	过程中需要	E操作数或下 一	一条		
要执行指令的地址,如何找到所需操作数以及下一条要执行的指令									
位置,这就是本是本本节要解决的问题。									

教 学 内 容	教师活动	学生活动
第四章 指令系统	导入;指令运行	
4.3 寻址方式	时所需操作数	
1. 寻址方式	及下一条指令	
指令的寻址方式和操作数寻址方式。	在哪?	
指令的寻址方式:确定本条指令的地址和下一条要执	讲解	
行指令的地址。		
操作数寻址方式:确定操作数地址。		
2. 操作数形式		
操作数可能在指令中,或者通用寄存器中,或者存储	重点:操作数可	
器单元中。	能在哪?	
4. 3 寻址方式		
4. 3. 1 指令寻址方式		
1. 顺序寻址方式		
指令地址在内存中按顺序存放,利用程序计数器(指	重点:下一条指	
令指针寄存器)PC 指导当前执行指令的地址。	令地址在哪?	
2. 跳跃寻址方式		
下一条指令地址不是由 PC 给出,而是本条指令给出。程		
序跳跃后,PC内容也相应地改变,按新地址顺序执行。		
指令中各种转移指令、循环指令是跳跃寻址。		
4. 3. 2 操作数的寻址方式		
1. 立即寻址	立即寻址实质:	
操作数直接在指令中给出寻址方式称立即寻址。	操作数在指令	
立即寻址特点:(1)由于操作码与操作数同时取出,	中。	
不需访问内存,指令执行速度快。		
(2) 由于操作数在指令中,不能随意		
修改。		
例: 8086 指令 ADD AX, 3165H		
本例中有两个操作数 AX、3165H。数 3165H 在指令中,		
称立即数。这种寻址方式称为立即寻址。		
执行操作: (AX) +3165H → (AX)		

2. 直接寻址

直接寻址指令中直接给出操作数地址码。 根据地址码

直接寻址操作 数在主存单元中。

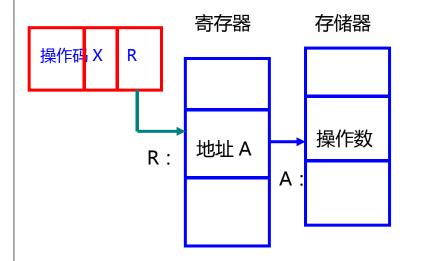


其中 X, A 为操作数, 其中 A 为内存地址

3. 寄存器寻址

指令中给出寄存器号,操作数在这一寄存器中,则称为寄存器寻址方式。

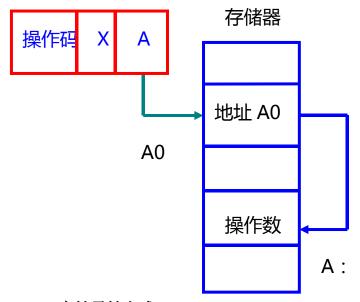
寄存器寻址特点: (1)寄存器寻址指令简单,(2) 从寄存器中存取数据比从存储器中存取数据快得多。所以 寄存器寻址方式可以缩短指令的长度,节省存储空间,提 高指令的执行速度。 寄存器寻址操 作数在寄存中



4. 间接寻址

间接寻址方式又可分为存储器间址方式和寄存器间址方式。

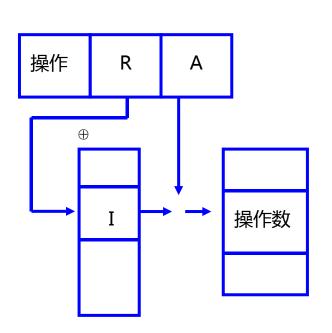
教学重点和难 点: (1) 寄存器间接寻址方式: 指令中给出寄存器号


操作数地址在内存中,首先由 R 值确定内存单元,取 出该单元值 A,由 A 作为地址取出这个单元值。

寄存器间接寻址:寄存器内容是操作数主存单元地址。(操作数在主存中,寄存器内容是地址)

(2)存储器间址方式:指令中给出内存地址 A,取出 A 单元值 A0,取出 A0 单元值作为操作数。

指令中给出操 作数地址单元 的地址。



5. 变址寻址方式

将指令中给出变址寄存器号和地址偏移量。操作数在 内存单元中,内存单元地址是它们之和称为变址寻址。

有效地址EA = (R) + A。

实质是操作数 在内存中。

6. 基址寻址方式

与变址寻址类似,但在基址寻址中,操作数地址是一 个称为基址寄存器的值加上指令中给出的地址值

7. 基址加变址寻址方式

基址加变址寻址:指令中给出基址寄存器,变址寄存器和偏移地址。操作数在内存中,内存单元地址由基址寄存器值+变址寄存器值+偏移值。

8. 相对寻址

指令中给出偏移地址,操作数地址或程序转移地址是程序计数器 PC 的当前内容与指令的地址码部分给出的地址(偏移量)之和。

总结	指令在执行时要解决两个问题:操作数在哪?下一条要执行的指令在哪?这				
41 	就是寻址方式。分为指令寻址和操作数寻址				
作业	教材: P66 1 寻址方式 , 3				
<u> </u>	学习指导: P47 二、1, 2, 3, 4, 5, 6				
	P49 五, 3				
课后	学生在理解指令作用要有一过程。寄存器和主存单元概念常出现混淆。程序是				
	由一条条指令组成,在运行时放入主存单元,这一概念常被忽略造成理解困难。				

J	思	通过学习,	建立这些概念对以后理解有很大帮助。