《计算机原理》 教 案

学	计算机	课 题	第六章 中央处理器						
科	应用		6. 1 CPU É	U 的功能及组成 6.2 时序					
授课时间		课的类型				新授课			
授课方法		讲授法、启发、指导			授课时数	2			
教具		多媒体、	授课班级						
教学目标		1. 了解 CPU 的功能 2. 掌握 CPU 的各组成部分的功能					审批意见		
教学重点		CPU 的功能,CPU 的各组成部分的功能							
教学难点		CPU 的功能, CPU 的各组成部分的功能							
		教	学	设	।			附	记
教师讲解,学生思考、记忆;教与学对应的全链式教学法									

教 学 内 容	教师活动	学生活动
 导入:提问:使计算机运作起来的内部核心是什么?	总结 归纳计算	思考、 回答并
 计算机硬件的组成有哪些?	 机语言及软件	 相互补充。
6.1 CPU 的功能及组成	的特点,进入教	
6.1.1 CPU 的功能	学课题。	
要使计算机系统完成任务,就要各部件协调工作,	讲授 新课:(多	
CPU 的功能就是控制各部件协调工作,它包括以下 4	媒体幻灯片演	
个方面。	示和板书)	
1. 指令控制		
程序是指令的有序集合。若要计算机解决某个问		
题,程序员就要编制解题程序。程序运行时必须严格		
按设定顺序进行。		
这种程序的顺序控制,称为指令控制。它控制指		
令必须严格地按程序设定的顺序进行。		
2. 操作控制		
一条指令的执行会产生各种操作信号,并送给各部		
件。使各部件按要求操作。		
一条指令的执行,要涉及到计算机中的若干个部		
件。控制这些部件协同工作,要靠各种操作信号组合		
起来工作。因此,CPU 产生操作信号传送给被控部件,		
并能检测其他部件发送来的信号,是协调各个工作部		
件按指令要求完成规定任务的基础。		
3. 时间控制		
对各种操作实施时间上的定时,称为时间控制。		
除了时间控制之外,一条指令的整个执行过程也受到		
时间的严格定时。只有这样,才能保证各功能部件组		
合构成有机的计算机系统。		
4. 数据加工		
要完成具体的任务,就不可避免地涉及到数值数		

据的算术运算、逻辑变量的逻辑运算以及其他非数值 数据(如字符、字符串)的处理,对数据进行这些运算 和处理, 称为数据加工。完成数据的加工处理是 CPU 的根本任务。

6.1.2 CPU 的组成

传统的 CPU 由**运算器和控制器**两大部分组成。现 在将 CACHE 移入 CPU 内部。这样, CPU 就由运算器、 cache、控制器三大部分组成。本章讲解的重点为控制 器。

控制器是协调和指挥整个计算机系统工作的"决 策机构"。控制器由程序计数器、指令寄存器、指令 译码器、时序产生器和操作控制器五部分组成。

1. 程序计数器(PC)

为了保证程序按其指令序列执行下去, CPU 必须确 定下一条指令的地址。程序计数器的功能就是用来确 定下一条指令在主存中的地址。当 CPU 取得当前要执一么? 行的指令后,通过修改程序计数器中的值来确定下一 条指令在主存中的存放地址。

程序计数器值的修改分两种情况:一是顺序指令 的执行情况, 二是分支转移指令的执行情况。

(1)顺序指令的执行情况 当 CPU 执行顺序指令 时,程序计数器值的修改较为简单。若当前取得的指 令是单字节指令,即将程序计数器的值加1;若当前 取得的指令是双字节指令,即将程序计数器的值加 2, ···: 如果当前取得的指令是 n 字节,则将程序计数 器的值加n。

(2)分支转移指令的执行情况 在执行分支转移指 令时,由分支转移指令的寻址方式确定下一条指令在 主存中的地址。若分支转移指令的寻址方式是相对寻 业,那么,程序计数器的值修改为当前地址加上相对

提问:什么是 | **思考**、看书、 协调和指挥整 回答: 个计算机系统 工作的"决策 机构"?

教师总结:

提问:程序计数 器的功能是什

思考、看书、 回答:

偏移量;若分支转移指令的寻址方式是绝对寻址,即 将转移指令中绝对转移地址送给程序计数器;当间接 寻址方式的分支转移指令时,程序计数器的值从寄存 器或主存中间接得到。

2. 缓冲寄存器(DR)

缓冲寄存器用来暂时存放 CPU 从主存读来的一条指令字或一个数据字。当 CPU 要将数据传送给主存时,亦先将数据保存到缓冲寄存器中。

注意:

缓冲寄存器的作用是:

- (1)作为 CPU 和主存、外部设备之间的信息中转站。
- (2)对数据起缓冲作用,补偿 CPU 和主存、外部设备之间的操作时间差异。
 - (3)缓冲寄存器为算术逻辑单元提供一个操作数。
 - 3. 指令寄存器(IR)

当 CPU 从主存取指时,取得的指令经缓冲寄存器 | 么? 转送给指令寄存器。因此,**指令寄存器用来保存当前** | CPU 正在执行的一条指令。

- 一条指令由地址码和操作码两部分组成. 执行给定的指令,指令译码器先要对指令中的操作码进行译码,确定该指令的操作性质,即以便向控制器发出具体操作的特定信号。
 - 4. 地址寄存器(MAR)

地址寄存器用来保存当前 CPU 所要访问的主存单元或 I/O 端口的地址,是 CPU 与内存或外设之间的地址缓冲寄存器。当 CPU 要对存放在主存或外部设备的信息进行存取时,由于 CPU 和存储设备之间存在着操作速度上的差别,所以必须使用地址寄存器来保持地址信息,直到内存的读/写操作完成为止。

5. 累加寄存器(AC)

提问:指令寄存 器的作用是什 么?

思考、看书、 回答;

累加寄存器简称累加器。从图 3-1 可以看出,它 | 提问:累加器的 | 思考、看书、 的信息来源于**缓冲寄存器或算术逻辑单元(ALU)**,它的 | 信息来源是什 | 回答; 数据出口是算术逻辑单元(ALU)。因此,**累加器为算术** 么? 逻辑单元(ALU)提供一个操作数,并用来保存操作的结 果。算术逻辑单元最基本的操作是加法,这就是累加 器名称的由来。显然,在一个算术逻辑单元中,至少 有一个累加器。

6. 状态寄存器

状态寄存器用来保存算术运算指令、逻辑运算指 令及各类测试指令的状态结果, 为后续指令的执行提 供判断条件。这些状态结果主要包括运算结果进位标 志、运算结果为零标志、运算结果溢出标志、运算结 果符号标志、运算结果奇偶标志等。状态寄存器还保 存一些控制标志,如中断允许标志、单步标志、方向 标志等。与状态结果标志不同,控制标志是通过专用 指令的执行而设置的。

总结	1. CPU 的功能					
41 	2. CPU 的各组成部分的功能					
作	教材 P110 2, 3					
作业	学习指导 P76 一、 二、					
课						
课后						
感						